追求错误

当你犯错的时候会有较高的激素水平分泌,当你正确的时候也会因为兴奋而有较高的激素水平分泌;

当你犯错的时候会有较高的激素水平分泌,当你正确的时候也会因为兴奋而有较高的激素水平分泌;

而无论是哪种类型的激素,这都会强化神经通路的连接;

这就是正反馈与负反馈均能对学习带来巨大帮助的原理;

所以追求成功不是必须的,这只是学习演化的最终一种结果状态;

该追求的是错误,毕竟错误占整个学习认知过程的绝大部分;

你接纳它了,并且错误也能让你兴奋,追求错误成为了你享受的过程,那么最终的演化的结果会是一个好的状态;

而一旦你的偏好是追求成功,那么你就难以推进任何事情,因为成功是小概率的,学习取得的进步一定是伴随大量的错误,这会对你造成巨大阻碍,因为他们与你的偏好背道而驰;

所以,追求错误同样值得,同样会得到一个更好的结果;

追求错误是个大智慧,他会让你在学习新知识,探索新领域的路上畅通无阻,酣畅淋漓,高潮迭起,没有任何压力与负担,有的只是兴奋;

Read more

相关系数异常告警系统 - 滚动窗口Beta增强

一、核心概念 1.1 什么是滚动窗口Beta? 滚动窗口Beta(Rolling Window Beta) 是一种动态计算Beta系数的方法,通过在时间序列上滑动固定大小的窗口,计算每个时间点的Beta值,从而捕捉Beta系数随时间的变化趋势。 核心思想: 静态Beta: [========全部数据========] → 单一β值 滚动Beta: [窗口1] → β₁ [窗口2] → β₂ [窗口3] → β₃ ... → ... 1.2 为什么需要滚动窗口Beta? 问题:静态Beta的局限性 当前方案计算的是静态Beta,使用全部历史数据得到单一β值: # 当前方案 beta = Cov(全部ALT收益, 全部BTC收益) / Var(全部BTC收益) # 结果: β = 1.25 (一个固定值) 但现实中,Beta系数会随时间

By SHI XIAOLONG

皮尔逊相关系数异常值影响

一、执行摘要 1.1 问题概述 在加密货币市场的相关性分析中,皮尔逊相关系数(Pearson Correlation Coefficient)作为衡量两个资产收益率线性相关性的核心指标,对异常极端值高度敏感。当市场出现闪崩、闪涨、交易所故障或数据错误等异常情况时,这些极端值会显著扭曲相关系数的计算结果,导致: * ❌ 相关性被低估:当只有一个序列出现异常值时 * ❌ 相关性被高估:当两个序列同时出现异常值且方向一致时 * ❌ 分析结果不可靠:基于失真的相关系数做出的决策存在风险 1.2 核心发现 1. 异常值影响显著:单个异常值可能导致相关系数变化超过 50% 2. 加密货币市场异常值频繁:闪崩、闪涨、流动性枯竭等事件常见 3. 当前系统缺乏保护:hyperliquid_analyzer.py 中未实现异常值处理机制 4. 解决方案成熟:Winsorization 方法可以有效缓解此问题 1.3 建议措施 * ✅ 立即实施 Winsorization

By SHI XIAOLONG

如何找到、训练、养成英文独特的韵律感呢?

🎧 方法核心:模仿“音乐”,不是模仿“单词” ① 不看字幕,先听节奏 选一小段(10–15 秒): * 美剧 * 播客 * 演讲 先不管意思,只听: * 哪些地方重? * 哪些地方快? * 哪些地方拖长? ② 跟读时“夸张重音” 刚开始一定要夸张: * 重的地方用力 * 弱的地方糊过去 宁愿像“表演”,也不要像“念书”。 ③ 用“哼”的方式练 一个秘密方法: 把句子当旋律 先用 “da da DA da da DA” 哼出来 再把词塞进去 这是训练韵律感最直接的方式。

By SHI XIAOLONG

英文独特的韵律感

很多中国人英语“听得懂、单词会、语法也对”,但一开口就不像英语,问题几乎都不在音标,而在你说的这个——韵律感(rhythm & melody)。 一、为什么英语有“音乐感”,而中文人普遍缺? 1️⃣ 英语是重音节奏语言(stress-timed) 英语的节奏不是“一个字一个字平均念”,而是: 重音像鼓点,不重音的部分被压缩、弱化、连过去 例如一句话里: * 只有少数词被“敲响” * 其余词快速滑过、模糊处理 你听母语者说话,会感觉: 哒 —— 哒 —— 哒 中间的东西像流水一样带过去 2️⃣ 中文是音节节奏语言(syllable-timed) 中文更接近: 每个字时长差不多 所以中国人说英语时容易变成: I / WANT / TO / GO / TO / THE / STORE (每个词都一样重)

By SHI XIAOLONG